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Abstract. We present an analytical quantum statistical theory of giant magnetoresistance in
thagnetic multilayers (current flowing in.the plane of the layers) which takes into 2ccount both
spin-dependent scattering of conduction electrons (s, d or hybridized sd electrons) and spin-
dependent potential barriers between successive layers. The model also includes quantization of
the momentum of conduction electrons in the direction perpendicular to the plane of the layers
(kz). The influence of the following parameters is discussed: ratio of spin-up to spin-down mean
free paths, heigh* ~f potential barriers between adjacent matetials and thicknesses of the various
Iayers. It is shown that the main contribution to the giant magnetoresistance is spin-dependent
scattering rather than spin-dependent potential barriers. In fact, if the mea free paths of spin-up
and’ spin-down electrons in the magnetic material are significantly different, the presence of
potential barriers (spin-dependent or not) can only decrease the magnetoresisiance amplitude,
Furthermore, the quantization of component momentum &, leads to well-defined oscillations of
magnetoresistance with- respect to thicknesses of the various layers. It should be possible to
observe these quantum oscillations experimentally.

1 Iﬂh‘oduction

The discovery of giant magnetoresistance effects in the Fe/Cr superlattice [1] triggered a
large number of studies on the transport properties of magnetic multilayers and sandwiches.
Since 1988 this effect has been observed in a large variety of magnetically-coupled
_ multilayers (where successive magneuc layers are coupled antiferromagnetically through
a paramagnetic spacer layer [2-4]) or in magnetic sandwiches (where magnetic layers have
different coercitivities or are coupled by exchange anisotropy to other layers {5-8]). In
both types of syst,em it is possible to change the relative orientation of magnetization
in the successive ferromagnetic layers—from antiparallel to parallel or vice versa—
by applying an external magnetic field. This change from a configuration of parallel
magnetizations to a configuranon of antlparallel magnetizations is at the origin of so-called
giant magnetoresistance (GMR). It is now widely admitted that the underlying mechanism
of GMR is a coherent interplay, between successive ferromagnetic layers, of spin-dependent
~ scattering (sDs) of conduction electrons occurring at the interfaces or in the bulk of the
magnetic layers 1 9—19]. More geneljally, GMR is related to the difference of microscopic
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electronic properties of spin-up and spin-down electrons” subsystems in ferromagnetic metals
and to the non-local character of the conductivity o(Z, Z') in the relation

j(@) = f o(Z, ZVE(Z) 32’

where j(Z) is the current density at point Z and E(Z’) the electrical field at point Z'.
Theories of GMR [9-21] based on spin-dependent scattering of conduction electrons have
been developed using two main different approaches:

(i) quasi-classical, based on Boltzmann equation and Fuchs-Sondheimer theory for size
effects in electronic transport [9-14];
(if) quantum-statistical, based on Kubo formalism [15-18].

A detailed comparison of these different approaches has been made in [20] and [21].
It was shown that they are almost equivalent under the condition of applicability of quasi-
classical approach itself; i.e. if it is possible:

(i) to neglect the quantization of electron momentum due to the finite size of the samples
in the direction perpendicular to the layers. The corresponding condition is kgl > 1
{kr =Fermi momentum and L =period or total thickness of the multilayer, depending on
the modulation of the lattice potential).

(ii) to neglect quantum interference effects. This requires &z£ 33> 1 (£ =electron mean
free path).

Furthermore, in most of these theories (except [14] and [17]) the influence of potential
barriers between successive layers has not been taken into account (assumption of free
electron gas with flat potential).

In this paper, we develop a quantum theory of GMR in magnetic multilayers of period
(ferromagnetic transition metal/non-magnetic transition or noble metal) which in addition
to the spin-dependent scattering in the multilayers also includes the quantization of electron
momentum in the direction perpendicular to the plane of the layers and the existence of
potential barriers associated with the chemical modulation of the multilayers [14]. The
question of the influence of potential barriers between adjacent layers is intimately related
to the nature of the electrons which carry the current in transition metals (sp, d electrons
and/or hybridized electrons). It may be argued that sp electrons carry most of the current,
because of their generally low effective mass [22]. For these electrons, the potential barrier
between two adjacent layers corresponds to the difference in energy between the bottom of
the sp band and Fermi energy in the two materials considered. Consequently, their height
is of the order of a few tenths of an eV to be compared with the few eV for Fermi energy
[23]: even if the barriers are usually small for sp elecirons (of the order of 10% of Fermi
energy eg), they are not always negligible. Another point is that exchange splitting of the
sp band in ferromagnetic transition metals is quite small compared to the Fermi energy; this
implies that the barriers are not or are only very weakly spin-dependent for sp electrons.

However, it has been pointed cut that d electrons in ferromagnetic transition metals can
also have quite a significant contribution to the conduction of the current [24]. For these
electrons, the scattering asymmetry is generally larger because of a significant difference
in density of states at e¢ between the d-spin-up and d-spin-down subbands. Moreover, the
height of the potential barriers can be fairly large—even comparable to the Fermi energy—
and is strongly spin-dependent because of the d-band splitting in transition metals.

Consequently, and in order to describe more accurately the transport propetties
in transition metal based multilayers, it is important to take into account both the
spin-dependent scattering cross-section of conduction electrons and the spin-dependent
modufation of the lattice potential throughout the multilayer. '
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2. Model

7 We consider the case of a sandwich con51st1ng of two ferromagnetic transition-metal
layers F1 and F2 separated by a non-magnetic spacer NM. Such sandwich is labelled-

. (Fla/uMm b/E2 c) in-which a, b and ¢ refer to the thickness of the respective layers. The
electric current flows in the plane of the sample and electron motion is constrained by infinite
potential walls at the outer surfaces of the sandwich. As discussed in [17], this situation is
equivalent to the case of an infinite multilayer of period (F1 2a/8M b/F2 2c/NM b).

We suppose that we are able to change the magnetic configuration of the sample
(from antiparallel to. parallel or vice versa) by applying an external magnetic field. The
conductivity for both alignments of magnetizations is obtained by adding the contributions
of spin-up and spin-down electrons calculated -separately, This is the two-current model
which provides a good description of electron transport in magnetic transition metals (spin-
flip processes can be neglected in 3d transition metals at low temperature). Electrons are
considered as ‘free’, with spherical Fermi surfaces. Within each layer, they move in a
constant potential which depends on the layer and on their spin. The Fermi. momentum
km" is related to the Fermi energy ¢r via the relation: km‘) = (1/h)/ 2m{eg — Ut} in
whzch m tepresents the effective mass of electrons and (eF —U T4y the difference between
the Fermi energy and the bottom of the conduction band for spin-up or spin-down electrons.
There is therefore a direct relationship between potential barrier height and difference in
Fermi momenta between adjacent magnetic and non-magnetic materials. Consequently,
in what follows, we discuss the influence of potential barriers in terms of differences in
Fermi momenta rather than differences in potential. Furthermore, the number of electrons

" of each species (spin-up or spin-down) per unit volume (n““) varies with km) accordmg

to nT = &1 /672,

As we are investigating the case in which mean free paths and Fermi momenta are spin

dependent, we write down the Hamiltonian of our system as a generalization of the sd model

- for ferromagnetic binary alloys A;_.B; developed in [25]. A and B are the two components

-of the alloy, and 1 — x and x their atomic concentrations. In the case of Permalloy, A and

B represent respectively Ni and Fe; in the case of a pure transition metal, B represents the
impurities which provoke the scattering of electrons. The Hamiltonian is written

W - Zk:Es(k)lk;')(k;’i + Zk: Eq(R) k) k51 -
DI AL RS IR LA LARI AN ) P ¢
n k ' 7 ’

In this expression, the two first terms represent the -total kinetic energies of s and
d electrons respectively, the third term the scattering of d electrons and the fourth term
the sd hybridization. The scattering of s electrons is not explicitly introduced as it is for
d electrons but is nevertheless taken into account via sd hybridization. Eq(k) and E(k)
are the kinetic energies for d and s electrons; k), (|, [k} and (k]| are the annihilation—
creation operators for Bloch states; {n3} and (ng[ are the annihilation—creation operators for
Wannier states; y is the hybridization constant; eg,': is the position of the d level, depending

on the spin index {4/ — 1) through exchange splitting and taking the value ed"‘j or ef_ﬁ
with the probability x* and 1 — x* respectively; and u is the index relative to the layer
(1 and'3 for the two ferromagnetic layers, 2 for the paramagnetic spacer).

To proceed further we have to calculate retarded and advanced Green functions of
the Hamiltonian (I). These Green functions are averaged at a microscopic scale over the
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distribution of A and B atoms within each layer. Nonetheless they remain inhomogeneous
at the scale of the layers’ thicknesses. To carry out this calculation, it is convenient to use
mixed (K , Z) representation [17], where K is the component of electron momentum in the
plane of the film and Z the coordinate perpendicular to the plane., The coherent potential
approximation (CPA) is used to average the Green functions at the microscopic scale.

Spin-dependent coherent potentials for d electrons within each Iayer {Zg, (E)) are
determired by the following equation:

(1 — 2NeG7 — o) Fia,u(E)

Z% (E) = €4, + —
wlB) =t e T By (B)

@

where €3, = x* ed T+ (11— x-“)ein represents the average potential energy in layer H and
F§ . (E) is the dlagonal dd part of the Green function in layer ;. for electrons with spin o.
. As a first step in the self-consistent calculatlon of the coherent potentials and of the
Green functions, we use for the expression Fg, ,(E) the relation

- _ __Posle)
Faan(E) = [ de T (B) —ae —yHE — ) =1

established for bulk materials [25]: In this formula, « is the ratio of d-band to s-band widths
and pgs(€) 15 the density of s-electron states in the pure metal, neglecting sd hybridization.
For s eiéctrons, the effective coherent potentials 7 . (E) may be approximated as:

2 .
=2, (E) ~ 'E"—Z"'ﬁ;“” Y Re[Fg ,(E) T Im[Fg, ,(E))
)

where (1/7)Im[ Fa,.(E)] is the density of d-electron states with spin o. In ferromagnetic
transition metals, the density of d states for spin-up and spin-down electrons can be rather
large near ep and quite different for the two species of electrons [23]. As a consequence,
the ratio of mean free paths for spin-up and spin-down electrons may also be very large (or
small). This situation is quite different from that in [15] in which the ratio of mean free
paths is propor'tional to the quantity |(w — j)/{(w+ j)I* (where o is the scattering impurity
potential and j that of the sd-exchange integral). Indeed, j is usually much smaller than w
so in this model the ratio of mean free paths cannot be very different from o,

3. Green functions, conductivity and magnetoresistance

To make the situation more tractable, we now consider s and d electrons separately, choosing
the values of Z7, and EZ, as effective potentials for s and d electrons. Besides that, we
neglect the discreteness of the lattice.

Within these assumptions, the Green functions for s and d electrons are solutions of the
equation:

RK? 3 52 - , ,
(E_W+5_§z_2_zﬂ)a(z,2> = ab(Z - 2) ©

with boundary conditions G(Z' + ¢, Z') = G(Z' — ¢, 2"} and

163 ac 2m

0Z|zep4e  Zlzegoe B
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when € — 0. Also, G(Z,Z) = 0 on outer boundaries (for Z,Z' = Qora+ b +c),
Gla+e€2)=Gla—¢2"), Gla+b+e Z) =Gla+ b — ¢, Z') and correspondihg
equalities for derivatives at inner boundaries.

Equation (3) i$ exactly the same as in [17], but here 1t is solved exactly without the
restriction X7 /ep| < 1.

- As mentloned in theé preceding section, in order to make the calculation completely
self—consistent, wé should calculate the: coherent potentials Eﬁ from equation (2) in which
Fgy ,(E) would be the diagonal dd part of the Green function calculated from equation (3)
which depends itself on EJ. Our approximation which uses for Fg;, (E) the expression
for the bulk material is t.he first step in this iterative self—consxstent calculauon This
approximation i§ valid as long as thicknesses are large compared to kz' and differencés
of potentials | " — 7| are small compared to eF. :

For the Grcen functtons we then get the following expressions:

[ty

; L] . ] .
K —'aq} | — COS K3C SINK: oS kxb sinikse
2mau sineZ | jeosii(Z —a) [Kz 3CS zb.‘l' 2bsinks ]

Bk " Den

G(Z,Z ) = —
—kssink(Z — 4) [— COS K3C COS ko — sin ke sin :czb]
K2
when Zand Z’ € [a] and Z > Z'; the notition Z € [2] means that the coordinate z
. torrésponds to a position along the z-axis within the layer of thickness a.
(ii) : .
G (Z.Z ) _ _Zmac; T [ lkecoskn(Z —a = B) sinkze ~ k3 sinko(Z —a — b) &os isc] '
h2k, Den —[Ky cos k(2" — g) sin K18~ K3 sinkz(Z’ — @) cosxya]-
when Zand Z' € [b] and Z > Z'.

@iy . )
2may s:nx3(Z’ Dy -
62,2y = B Den '

s K] o .
x3 coskzs(Z —a—1b) ['— cos 14 §in b + cos kb smxla]
_ _ X2 ; !
X

—ksinka(Z —~a —b) [— sin ko d sin xzb -~ cosika cos xzb]
K1 .

whenZandZ’e[c]andZ<Z"

C(iv)
, 2mag sini Z
G(Z.ZN = hz Don [k2cosk0(Z" —a — b) Sl]'lngC — K3 5in :cz(Z — g <= b) cos k3c]
K2
when Z &€ [a] and Z’ & {b].
M)
' G(Z Zy= 2mao sm.'qZ’ sinks(Z — D)
hy Den
when Z € [c] and Z' € [a]
- (vi)
Gz, 7y = s Z D) k(Z' — &) sinsra + Ky sinka(Z' — @) cos k]
Hic; Den - ) 7 - N

when Z € [c] and Z' € [B].
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For other regions of Z and Z’, the expressions of the Green functions can be found by
appropriate permutations. In all cases,

Den = k; cos kja(sin k3¢ cos kb + (k3 /k2) sinkeb cos izc)

— kg sinkya(sinksc sinkab — (k3/K2) cos kab cos kac).

In these expressions k; is defined by «k, = (1/h)/2m(E — K2/2m — Z,) for p =1,2,3.
Zevos of the real part of the denominator (Den) define the eigenvalues of the energy of the
problem considered.

Ohm’s law in the present inhomogeneous media is given as
j( = f o(Z,ZVE(Z)PZ'

“where j(Z) is the current density at point Z and E(Z’) the electrical field at point 2’
assumed to lie along the x-axis. As was pointed out in [17], the conductivity is a non-local

characteristic of the media. The expression of the non-local conductivity o(Z, Z’) is given
by [16): '

ket

r
wNay

o(Z,Z') = Y 0k Gk(Z,Z',ep +i0)Gk(Z, Z', €5 — i0) @)
X

in which agp is the lattice constant, N the number of sites in the plane of the Jayers, and
vk, = K:/m the x-component of the electron velocity.

In the in-plane current geometry (CiP), the measured conductivity is given by:
1 P P ' '
o=— f f dZdZ'e(Z, Z)
D b ,

where D = a 4 b + ¢ is the total thickness of the sample. The final expression of this
conductivity has been calculated analytically; its expression is given in the appendix, The
expression of the magnetoresistance is obtained from the calculation of the conductivity
in both the parailel and antiparalle] alignment configurations of the magnetizations in the
successive ferromagnetic layers. In the next section, we use this analytical expression to
investigate the influence of the quantization of electron momentum along the z-axis, the
respective role of spin-dependent scattering and spin-dependent potential barriers on the

magnetoresistance and the variation of magnetoresistance with thicknesses of the various
.layers.

4. Results and discussion

4.1. Influence of the quantization of electron momentum along the z-axis

The expression given in the appendix shows that the conductivity and the magnetoresistance
of the multilayers oscillate as the thicknesses of the layers are varied. These oscillations are
due to the quantization of the z component of conduction-electron momentum. They must
be distinguished from the magnetoresistance oscillations observed in coupled multilayers
which arise from oscillations in the interlayer coupling [26]. When the thickness of layer u
is varied, the period of these oscillations is equal to 7z/kf and their amplitude asymptotically
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decreases as (1/kfF L#) exp(—L#/ I*), where L* is the thickness of layer p and I the mean
free path of electrons in this layer. It is interesting to note that the mean free path is the
characteristic length associated with the damping of quantum oscﬂianons in the conductivity
" and magnetoresistance of these multilayers.

In figure 1, we compare the magnetoconductivity of sandwiches calculated from the
present theory, which takes into account quantization of electron momentum, and from the -
theory of [17] in which these oscillations have been neglected. For this comparison, we
- chose k}: = k} = k} = 1 A~! equal for spin-up and spin-down electrons, which means that

we do not introduce any potential barrier between layers. For the mean free paths, we take
the values determined from fits of experimental data on NiFe a A/Cu b A/NiFe ¢ A/FeMn -
spin-valve structures [171: If =7 =120A; #f =1} =13 A and :; =l =215A In
- figure 1, the thicknesses of the various layers are large compared to k' (a varying between
0 and 300 Ab=24Ac=50 A) At these large thicknésses, the guantum oscillations
are almost totally damped ((iq:L”) > I). -Therefore the results of thc two theories are
mdlsnngmshable :

02 .
' [
_ 0 15 - ”This work
oE
B 0.1
j<I
0.05 | ]
0o 100 200 300

a (A)

Figure 1. Comparison of magnetoconductivity calculated from the present theory and from [17]
for the case of NiFe a A/Cu 22 AfNiFe 50 AfFeMn spin-valve sandwiches for &l = i = i =
1 A" equal for spin-up and spin-down electrons, and I} =] = 120 A 1} =18 =13 A;
i} =1} =215 A. The results from the two theories are indistinguishable at these large
thicknesses. -

In figure 2, we consider a situation with much thinner layers {(a varying between 0
and 40 A, b = 10 A, ¢ = 10 A) and a smaller value of Fermi momentum (kf = k2 =
ki =03 A™"). In this case, well-defined oscillations are found, the amplitude of which
decreases as the thickness of the first layer is increased. We think that it should be possible
to observe such oscillations of conductivity and magnetoconductivity in multilayers with
very thin layers even in the presence of interfacial roughness provided that this roughness
is small compared to the period of oscillations. Fe-based multilayers in which d electrons
seem to carry a significant part of the current {24] may be particularly good candidates for
the observation. of these oscillations. We draw attention to the fact that the-osciliations
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0.5 .
Ty
Ea 0.3 ;
C :
<] 0.2 =
0.1 ;

0. L : . . :

0 10 20 30 40

a(A) ,
Figuré 2,  Magnetoconductivity calculated from the present theory im the case of
£ a Aim 10 AfF 10 A spin-valve sandwiches for kF = kE =03 A" equal for spin-up
and spin-down elections, and I = i} =120 A; 1} =1} =13 A =1} =215 A. Osciltations

are observed in the piesent theory because of the low\ar thicknesses and smaller Fermi miomenta
than those for the case illustrated in figure 1.

0.6
E 04}
E'—‘-
©
<]
0.2
R R v i 02 ¢

: T
r{1.1. / kl le / ku

Figure 3. Mamemconducnv:ty ofa sand\wch £ 10 Afom b A/F 10 A Qimit of very thifi spacer
layer) versus ratio kp* /it (= k3¢ 7k in the presence of Iarge spin-dependent scattering in the
ferrommagnetic ldyers: /] /1" = 11/13 =120 A/i3 As ¥ =430 =1 A7),

observed in magneto-opt:c Kerr rotation, for instince in Fe/Cu multilayers [27]; have
the samé physxcal origin ds the present oscillations in transport properties, namely the
quatitization of electron moimentum in the direction perpendlcular to the plane of the 1ayers
However, the Kerr effect is related to fransitions within the d-band only, while the transport
propertles involve both sp and d electrons. Therefore these dscillations are proba,bly more
pronounccd in magneto-optical than in transport properties. I principle, as in the De Haas
Van Alphen effect, the experimental observation of these dscillations m1ght be used to
deferming Fermi-surface parameters.

42. Inﬁuence of potentfat barriers on the giant magnetoresistance
In this section, we successively consider three sitations:

(i) the effect of spin-dependent potenual barriers in the presence of large spm-dependent
scatering;
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(i) the effect of spm—dependent potentml bamers when all scattenng is not spin- .
dependent;

(iii) the effect of spm—mdependent potential barriers in the presence of Iarge s$pis-
dependent scatteriig. : .

From this investigation we will show that, in general, the existence of potential barriers
(spin-dependent of not) decreases the giant magnetoresistance which mainly originates
from spin-dependent scattering. The two effects may have constructive contributions to
_'the magnetoresistance only when spin-dependent scattenng is very weak,

4.2.1. The effect of spin-dependent potenual bamers in the presence of large spm—dependent
scattering. To illustrate this case, we choose the followmg set of paraieters: Il /Y T
1*/13 120 A713 A correspondmg to NigoFeap [17], =kt =1AY%a=c=10 A
=0 A and we vary kF aid kF keeping k = k”. We set b = 0 A (the limit
of a very thin spacer layer) t6 focus on the effect of the spin-dependent barriers at the
" interfaces between the ferromagnetic layérs without additional effects from the spacer layer.
The two ferromagnetic layers are assumed identical. In this case, the conduction électrons
- experience a flat potentia] when the iagnetizations are in parallel alignment and spin:
dependent potential barriers when they are in antiparallel alignment. Figure 3 shows the
amplitude of the giant magnetoresistande (expressed as the relative change of conductivity
nomlallzed by conductivity when the magnetization is in parallel alignment) versus the ratlo
'IcF k,_- The general trend is clearly a decrease in the amplitude of GMR as [kF - kF ]
increases. Some oscillations are observed around this general trend which are due to the
quantization of electron morentum along the z-axis as discussed in the preceding section.

4.2.2. The effect of spin-dependent potential barriers in the absence of spin-dependent
scattering. We consider here the other limiting case where 1 /1 =1 /1} =66 A/66 A =1
(the. same conductivity as above but w1thout spm—dependent scattenng) The other
paranieters aré kept the same as above B =k =1A"a=c=10Aad
b = 0 A. When the ratio k' /k;" is equal to one, the GMR amplitude is equal fo zero
as expected in the absence of both spin-dependent scattering and spin-dependent potential
barriérs. As le / k is varied above or below unity (see figure 4), an increase of GMR
is first observed followed again by a decrease when 1k,’,T_— k;*i becomes too large. Such
behaviour can be understood in terms of electron reflectance at the potential barriérs in the
. antiparallel magnetic corifiguration of the sandwich. Indeed, electrons with small angle of
incidence are almost ideally reflected with very small penetration length when the height
of thie potential barriers increasés. Therefore for small barrier heighits, the GMR afises a§
. a result of the change of condictivity between the two cases without barfiers (parallel
alignment) and with spin-dependent - barriers (annparallel alignmerit). However when the
barrier height is too large (large or small ratio kFT/ kF ), thesé two situitions (with or
without barriers) become eguivalent because the conduction electrons are specularty reflected
eithér on the outer boundaries or on the potential barriers, leading in both cases to the
same conductivity (in this case there is no size effect and the two layers are completely
decoupled). The maximum amplitude of magnetoresistance that can be obtained from this
mechanism of spin-dependent barriers is nevertheless significantly lower than in the case of
spin-dependent scattenng (compare the amplitudes of the GMR in figures' 3and 4). Therefore,
spm-dependent scattering remains the main origin -of GMR in magnetic multilayers. Spm-
dependent -potential barriers can give a constructive coniribution to the GMR in the case
of very weak spin-dependent scattering. However in most Cases, these barriers reduce the
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GMR amplitude because they induce a reflection of the conduction electrons and therefore
prevent the exchange of electrons between the ferromagnetic layers through the spacer
fayer. This is the so-called ‘channelling effect’ also discussed in a classical framework in
[14]. The situation would of course be totally different in a geometry with current flowing

perpendicular to the plane of the layers (CCP geometry). Work is in progress to treat the
case of CCP GMR in the presence of barriers.

0.10

parallel

Aclo
o
&

1T 1.12
RFI kF

Figure 4. Magnetoconductivity of a sandwich ¥ 10 Asm 0 AfF 10 A (limit of very thin
spacer layer) versus ratio k};* / Jcll:T (= kgl’ /k;’;*) in the absence of spin-dependent scattering in
the ferromagnetic layers: ] /1f =il /il =66 Aj66 A=1; b =i =141

0.40
2 0.307
-
B 020
<
0.10}
- 0.005

T, 17
K2 K]
Figure 5. Magnetoconductivity of a sandwich ¥ 10 A/Nm 20 A/F 10 A versus ratio k2T /&3 in

the presence of large spin-dependent scattering in the ferromagnetic layers: If JH g !; /I; =
20ABAL =8 =215k = =T =d =06 AL

4.2.3. The effect of spin-independent potential barriers in the presence of spin-dependent
scattering. 'We now consider the situation where potential barriers exist between the spacer
layer and the ferromagnetic layers but are not spin dependent. The set of parameters chosen
s =0/ = 12013 A, /5 =215 AR15A = 1; bkt = kg fRSY =
0.6/0.6 =1 and we vary 'k;*;‘t in the spacer layer keeping k%-* = J’c%T (non-magnetic spacer).
Figure 5 shows the result. The same general trend is observed as in the two previous cases.
The GMRr amplitude is maximal in the absence of potential barriers and decreases as the
height of the barriers increases due to reflection of conduction electrons.
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4.3. Influence of the nature and thickness of the Spacer layer

In this section, we investigate the effect of the spacér layer on the magnetoresismee of the
sandwich. In particular we compare the situations in which the spacer constituies en.her a
potential barrier or a potential well for conduction electrons.

0.6
05| , S
0.4 .

parallel

-Ac/o

E) 30

10 5 20

b (A}
Figure 6. Magnetoconductivity of a sandwich of composition F 5 A/nv b AfF 5 A versus
thickness b of the spacer Iayer (b varying from 0 to 40 A). The parameters are: £} /if =
g1 = 120 AaAdg=205Ap15A= kgt /gt =T i = 1A H A =1 and
kz t= = 0.6 A~L, The spacer layer constitutes a potential barrier for oﬂnduchon electrons.
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Figure 7. Magnetoconducuvnty of a sandwich of composition F 5 At b AfF § A versus
thickness & of the spacer layer (b varying from 0 lo 40 A). The parameters are: !1111 =
g =120 A3 A /1 =215 37215 A= it g = kY2 =03 A3 Al =1
- and k%’ = k:-l' =10.6 A~l. The spacer layer constitutes a potential well for conduction electrons.

Figure 6 represents the magnetoconductivity of a sandwich of composition F 5 A
b A/F 5 A versus the thlckness b of the spacer layer (b varying from 0 to 40 Ay,
The parameters are: [1/I} = fi/1; = 120 A/13 A By =215 A215 A = 1
ke = Bt =1 A—'n A'=1and &' = 0.6 A-'. The smaller value of
the Fermi momentum in the spacer layer compaxcd to in the ferromagnetic layers implies
that the spacer acts as a potential barrier. A dramatic decrease in the magnetoconductivity
is observed as only one monolayer of spacer is introduced between the two ferromagnetic
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layers (from 60% to 7%). At larger thicknesses, the magnetoresistance exhibits a smooth
maximum modulated by oscillations due to the quantization of momentum along the z-axis.
The presence of potential barriers may explain the absence of GMR or its very low amplitude
observed in some multilayers. It is indeed striking that Fe/Cr [1] multilayers exhibit a large
GMR while only small magnetoresistance has been observed in Fe/Cu multilayers [2]. In
contrast Co/Cu or NiFe/Cu multilayers exhibit a very large GMR [2-4] but neither Co/Cr nor
NiFe/Cr [28]. Similarty NiFe/Cu/NiFe/FeMn spin-vaive sandwiches show large GMR while
NiFe/Al/NiFeffeMn do not exhibit any magnetoresistance [29]. Several reasons can be put
forward to explain the puzzling absence of GMR in some of these systems. For instance in
NiFe/Al it has been observed that large interdiffusion between Permalloy and alumininm
takes place at the interfaces with the formation of an NiFeAl paramagnetic interfacial alloy.
This interfacial alloy can provoke strong spin-flip scattering leading to the absence of GMR
in this system [29]. In NiFe/Cr multilayers it has been proposed that competing spin-
dependent scattering phenomena at the NiFe/Cr interfaces (larger scattering for spin-up
electrons) and in the bulk of the NiFe layers (larger scattering for spin-down electrons) may
explain the very low magnetoresistance amplitude of these multilayers [28]. However we
believe that in all cases the existence of potential barriers resulting from a mismatch of the
Fermi wavevectors in the adjacent materials may explain or at least contribute to the very
low GMR observed in several of the systems listed above.

Figure 7 illustrates the opposue situation in which the spacer layer consututes a potentlal
well. We choose here: I7/1} = If/13 =120 An3 A, /13 =215 A215 A =
BTt =12t 7id =03 A-1/03 A~! =1 and &X' = k2 = 0.6 A-!. The thicknesses of
the fcrromagnetlc layer are the same as in the previous case: @ = ¢ = 5 A. The general
trend is a smooth decrease of GMR due to the scattering in the spacer layer and (o the
shuntmg of the current in this layer. However, well-defined damped oscillations of period
ke 2t 2 5.2 A are observed which are again due to the quantization of momentum in the
directlon perpendicular to the plane of the layers. Therefore the presence of potential wells
between the ferromagnetic layers does not affect significantly the GMR amplitude in contrast
to potential barriers which drastically reduce the GMR as shown above.

5. Conclusion

We have presented a real-space quanturn theory of giant magnetoresistance in magnetic
multilayers which takes into account spin-dependent scattering in the ferromagnetic
layers and existence of spin-dependent (or not) potential barriers {or wells) between
layers. We have shown that the quantization of electron momentum along the direction
perpendicular to the plane of the layers leads to well-defined oscillations in conductivity
and magnetoresistance which should be observable experimentally. We have demonstrated
that the main origin of the giant magnetoresistance in magnetic multilayers remains spin-
dependent scattering and that in most cases (except if the spin-dependent scattering is very
weak) the existence of potential barriers (even spin-dependent barriers) decreases the GMR
amplitude. Therefore in order to obtain large GMR, it seems important to choose couples of
magnetic and non-magnetic materials which have good matching of Fermi momentum to
minimize the effect of potential barriers.
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Appendix

In this Appendix, the analytical expression of the conductivity of a sandwich of composmon_

- Fa A/NM b AfF ¢ A with infinite potential walls on outer boundaries is given. This
expression is thie sum of nine terms which must be mtegrated within dszcrent intervals,
The following notations are used:

.f(x);(lwx)/z ”ﬁ-—km/kﬁ

cu = [Re (\fT— (1 = = i/0.48) |

d, =k ‘Im (‘/1 —(1- x)vi - f/l,ukf;)l .

withx = 1—K?%/ k{,”2. I, and K represent respectively the mean freé path and Fermi wave
vector of the considered species of electrons (spin-up or spin-down) in layer w.
Term 1 = {cic2(1 +e~*1%) _
x [4{ca/co)(] + e~ *P) (1 — e7*5¢) + 2(c}/cs + (1 - F"“’b)(l +e~40e)
+ 4725 (c3 fe2 — 1)(1 — e™ %) cos 2¢3¢]

+ (1 — e M9 [(1 + e~ HP)(] 4 ¢7H°) (§§ +EFEF c§)
A &
+2(1 — e~ )1 — e~ ) (cEes fcy + cac)

+ Ze‘Mzb(l + e'%c) ( 2_23 +ei~g+ C3) cos 2c1b
2

2.2 o .
+ 2er-2dzr.‘(1 + e—Mzb) (C_;‘;_% — % —_ c% + Cg) cos 2c3c’

7
+ 8o 2he-dhb (20 g0, - cac3) sin2cscsin200b
+ f4e2dsc—2dub ( Clc3 02 + c2 + c§) cos 2c3¢c €08 2¢2b1}.
‘ 4 '
Term 2 = {(1 + e){2(cs/ea) (S + )1 = 6™5)(1 6~
o+ 2e1 /e (S + BHL + e (1 = &40
+ 46749 (1 — &Y (c3 /) (¢} — cF) cos 2c1a
+de~2 (1 — e~44%) (1 02) (¢ — B cos 2esc] + (1 — 6=40)
X EA e M1+ (/6 + 1) + ) Haeres(l —e %) (1 — )
26-2:13:(1 4 e~y (2 /2 + 1)(~c + cd) cos 2ose
+ 26701 + e744) (c} e} — 1)(c] + ) cos2era
+ 422822 _ 1) (=} + 2) cos 230 cos 2eral}.

Term 3 = Term 1 with petmutatlon ledandaec
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Term 4 = (1 — e™*)[ca03(1 — ¢1/62)*(1 + e7449)(1 — b)Y + 4oy 03(1 — e dha—ideb)
+ 203038729 (] — e~ *2PY(c? /e w 1) cos 2c1a].
Term 5 = {deica(1 — ") (1 — e~ 19) (1 — & 240)% - (1 — e45b)
X1+ (1 — e ™) a(c} /G + 1) + (1 /e2)
x (1 — e 91 + ™)} + )
+ 267251 — e~ %9 (¢) fea)(—c3 + €3) cos 2¢3¢
+ 2e7249(] — e *Yepcy(ct /el — 1) cos 2cial}.
Term 6 = Term 4 with permutation 1 < 3 and a < c. _
Term 7 = 2(c1/c2)(1 — e7*49)[dcpe5(1 — e~ 200)(1 — g~ Hc-21ty
+ (€2 — €3)* (1 — e~ HPY(1 - e~¢) 4 2(cZ — c2ye~2B(1 — e~*P) cos 2¢5¢].
Term 8 = 8cycse~2h0(] — e~y (] — o=y
Term 9 = Term 7 with permutation 1 <+ 3 and a + c.

Furthermore, we define:

Den = (¢} + ¢2) (1 + ™) 2 (cs e)(1 — e~ P) (1 — e~

+(c2/c3 + 1)(1 + e *0)(1 ¢~ 40)]
+ 2(1 — c3/c)[2e72Rb-2ha ] L ) cos 2050 cOs 202
— e 2B0(] 4 e (1 - e~ *2P) cos 2e5¢]
— Be~2he=2b=22 o5 901 af(cd /3 + 1) cos 205 cos 2020
— 2(c3/c2) sin 2cs¢ sin2¢;b]}

+ (e} — D1 + e~ %) [8(ca/cr)e %P2 sin2esc sin 2625
~ 4(c3/c% + 1)e™ 2202455 005 2036 cos 262b)
+ 2(1 — /A 2% (1 + e~ ") (1 + e7*) cos 2¢b
— 2e~2ha=2dw () 4 ¢=¥:by o5 30 a cos 2cac]
+ 267219 cos 2¢1al(c3/ch 4 1)(1 + e~ ¥ (1 4 &~46)
+ 2(cs/e)(1 — ™4ty (1 — e~ 40y])

+2e162{(1 = e 2(c3/ez)(1 + e (1 — e )
+(63/c + 1)(1 — &™) (1 o749
— 21 — /)2~ MG | e gin Dy 2 5in 2esb
+ 7861 - g~ ¥19Y(] — @Dy cos 2e5c] + B RAse—Mb-2d1e gin 0 g

x [(c3/c3 + 1) cos 2¢3¢ 5in 2638 + 2c3/ca 5in 236 €05 20261},
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Then the three following expressions:

expre, Term L f (x)
R blgk(”Tcrmz
expre, = —-r;@ Den fx)
R km Tertn 3
expre; = L% M2 —e f gx)

o3 k‘3} Den

must be integrated in the mtcrvals [0, 1] 0,1 - v2 2] and’ [0 1— vy 2, respecuvely, as the
three quanuues : :

11 Term 4

expre, = —Fl:—ﬂ—m fx)
L\ KD Term s
s == \i®) W Den 1
o BV E Tem 6
ex_preﬁ——(kts)) ; Den f(x).

For the three following terms, the intérvalsrof integration are different:

b Term 7 .- '
: éxpre,‘, = E&% Fi lfl the interval [max(O i u2 2) 1]
I3 Term 8 |

- expreg = @mm fxy - in the interval {max(0, 1 — v} 9, 1]

L\{ b ‘” Term 9 2
exprey = (@) (F)( i~ | Den fix) in the interval [max(1— v, 1—v9), 1].

The conductivity of the sandwich in the parallel or antiparallel magnenc conﬁguratlons is
ﬁna]!y given by:

D‘“‘ (1)kmz f expre, d
low; -

In this formula o1 represents the conductivity of the species of electron considered (spin up
or spin down) in layer 1. Low; and up; are the lower and upper limits of integration which
are given above for each of the nine terms to be integrated. The variable x is related to
 the incidence of conduction electrons. The total conductivity is the sum of the conductivity
of spin-up and spin-down electrons. The magnetoconductivity is obtained by calculating
this total conductivity in both configurations of parallel and antiparatlel alignment of the
magnetizations in the ferromagnetic layers.
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