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Quantum effects in the giant magnetoresistance of magnetic 
multilayered structures 
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CEA D6panement de Recherche Fondamentale sur la Matiae Conden&. CENG, SP2M/MP, 
85X. 38041 *oble cedex, France 

Received 8 June 1993, in final form 2 August 1993 

Abstract. We p m t  an analytical quantum statistid lheory of giant magnetoresistance in 
magnetic multilayers (cumnt flowing in.the plane of Ihe layers) which Iakes into ?ccmnt both 
spindependent scattering of conduction clccuons (s, d or hybridized sd electrons) and spin- 
dependent potential barriers benveen successive l a p .  The model also includes quantization of 
the momentum of conduction elecaons in the dkct ion~prpdicular  to the plane of the l a p  
(U The influence of the following parameters is discussed: ralid of spin-up to spindown mean 
free paths. heigi? -f potential barriers between adjacent maIerials and thicknesses of ti% various 
layers. It is shown hat  the main conuibution to the giant magnetoresistance is spindependent 
scaaering rather than spindependent potential barriers. In fact, if Ihe mean hee paths of spin-up 
and spindown electrons in the magnetic material are significantly differem the presence of 
potential barrim (spindependent 01 not) can only denease the~magnetoresismce amplitude. 
Furthermore. the quantization of component mOmenNm Y, leads to well-deiined oscillations of 
magnetoresistance with respect to thicknesses of the various layers. It should Ix. possible to 
observe these quantum oscillations experimentally. 

1. Introduction 

The discovery of giant magnetoresistance effects in the Fe/Cr superlattice [l] triggered a 
large number of studies on the transport properties of magnetic multilayers and sandwiches. 
Since 1988 this effect has been observed in a large variety of magnetically-coupled 
multilayers (where successive magnetic layers are coupled antiferromagnetically through 
a paramagnetic spacer layer 12-41) or in magnetic sandwiches (wheF magnetic layers have 
different coercitivities or are coupled by exchange anisotropy to other layers [ S I ) .  In 
both types of system, it is possible to change the relative orientation of magnetization 
in the successive ferromagnetic layers-from antiparallel to parallel or vice versa- 
by applying an external magnetic field. This change from a configuration of parallel 
magnetizations to a configuration of antiparallel magnetizations is at the origin of so-called 
giant magnetoresistance (GMR). It is now widely admitted that the underlying mechanism 
of GMR is a coherent interplay, between successive ferromagnetic layers, of spindegendent 
scattering (SDS) of conduction electrons occurring at the interfaces or in the bulk of the 
magnetic layers [1,9-19]. More generally, GMR is related to the difference of microscopic 
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electronic properties of spin-up and spin-down electrons’ subsystems in ferromagnetic metals 
and to the non-local character of the conductivity u(Z, Z’) in the relation 

j ( Z )  = u(Z,Z‘)E(Z’)d3Z’ J 
where j (Z)  is the current density at point Z and E(2‘) the elechical field at point Z‘. 

been developed using two main different approaches: 

effects in electronic transport [9-14]; 

Theories of GMR [9-211 based on spindependent scattering of conduction electrons have 

(i) quasi-classical, based on Boltrmann equation and FuchsSondheimer theory for size 

(ii) quantum-statistical, based on Kubo formalism [15-181. 
A detailed comparison of these different approaches has been made in [201 and [21]. 

It was shown that they are almost equivalent under the condition of applicability of quasi- 
classical approach itself; i.e. if it is possible: 

(i) to neglect the quantization of electron momentum due to the finite size of the samples 
in the direction perpendicular to the layers. The corresponding condition is ~ F L  >> 1 
(kF =Fermi momentum and L =period or total thickness of the multilayer, depending on 
the modulation of the lattice potential). 

(ii) to neglect quantum interference effects. This requires kFL >> 1 (L =electron mean 
free path). 
Furthermore, in most of these theories (except 1141 and [17]) the influence of potential 
barriers between successive layers has not been taken into account (assumption of free 
electron gas with flat potential). 

In this paper, we develop a quantum theory of GMR in magnetic multilayers of period 
(ferromagnetic transition metalfnon-magnetic transition or noble metal) which in addition 
io the spin-dependent scattering in the multilayers also includes the quantization of electron 
momentum in the direction perpendicular to the plane of the layers and the existence of 
potential barriers associated with the chemical modulation of the multilayers [14]. The 
question of the influence of potential barriers between adjacent layers is intimately related 
to the nature of the el&ons which cany the current in transition metals (sp, d electrons 
andfor hybridized electrons). It may be argued that sp electrons carry most of the current, 
because of their generally low effective mass [22]. For these electrons, the potential barrier 
between two adjacent layers corresponds to the difference in energy between the bottom of 
the sp band and Fermi energy in the two materials considered. Consequently, their height 
is of the order of a few tenths of an eV to be compared with the few eV for Fermi energy 
[U]: even if the barriers are usually small for sp electrons (of the order of 10% of Fermi 
energy E F ) ,  they are not always negligible. Another point is that exchange splitting of the 
sp band in ferromagnetic transition metals is quite small compared to the Fermi energy; this 
implies that the barriers are not or are only very weakly spindependent for sp electrons. 

However, it has been pointed out that d electrons in ferromagnetic transition metals can 
also have quite a significant contribution to the conduction of the ment  [24]. For these 
electrons, the scattering asymmetry is generally larger because of a significant difference 
in density of states at CF between the d-spin-up and d-spin-down subbands. Moreover, the 
height of the potential barriers can be fairly large-even comparable to the Fermi energy- 
and is strongly spindependent because of the d-band splitting in transition metals. 

Consequently. and in order to describe more accurately the transport properties 
in transition metal based multilayers, it is important to take into account both the 
spin-dependent scattering cross-section of conduction electrons and the spin-dependent 
modulation of the lattice potential throughout the multilayer. 
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2. Model 

We consider the case of a sandwich consisting of two ferromagnetic transitionmetal 
layers F1 and E2 separated by a non-magnetic spacer N M .  Such sandwich is labelled 
( F ~ ~ / N M  b/F2 c)  in which a, b and c refer to the thichess of the respective layers. The 
electric current flows in the plane of the sample and electron motion is consmined by iniinite 
potential walls at the outer surfaces of the sandwich. As discussed in [17], this situation is 
equivalent to the case of an infinite multilayer of period (F1 a / N M  b/F2 2c/NM b). 

We suppose that we zue able to change the magnetic configuration of the sample 
(f" antiparallel to parallel or vice versa) by applying an extemal magnetic field. The 
conductivity for both alignments of magnetizations is obtained by adding the contributions 
of spin-up and spindown electrons calculated separately. This is the two-current model 
which provides a good description of electmn transport in magnetic transition metals (spin- 
flip processes can be neglected in 3d transition metals at low temperature). Electrons are 
considered as 'free', with spherical Fermi surfaces. Within each layer, they move in a 
constant potential which depends on the layer and on their spin. The Fermi momentum 
kF') is related to the Fermi energy 4F via the =lation: ki'4) = ( I / h ) J % ( E F  - Ut($)) in 
which m represents the effective m a s  of electrons and (EF - Ut(&)) the difference between 
the Fermi energy and the bottom of the conduction band for spin-up or spindown electrons. 
There is therefore a direct relationship between potential barrier height and difference in 
Fermi momenta between adjacent magnetic and non-magnetic materials. Consequently, 
in what follows, we discuss the influence of potential barriers in terms of differences in 
Fermi momenta rather than differences in potential. Furthermore, the number of electrons 
of each species (spin-up or spindown) per unit volume (nt(4)) varies with IC;'') according 

As we are investigating the case in which mean free paths and Fermi momenta are spin 
dependent, we write down the Hamiltonian of our system as a generalization of the sd model 
for ferromagnetic binary alloys A,-,B, developed in [25]. A and B are the two components 
of the alloy, and 1 - x and x their atomic concentrations. In the case of Permalloy, A and 
B represent respectively Ni and Fe; in the case of a pure transition metal, B represents the 
impurities which provoke the scattering of electrons. The Hamiltonian is written 

fi ~&(k ) ikF ) (kF i  +cE&)lk:)(kil 

to nt(&J = k2'"'//6~2, 

k x 

+ €:;:In3 (4 I + y(lk3 IkiM:i). (1) 
n k 

In this expression, the two first terms represent the total kinetic energies of s and 
d electrons respectively, the third term the scattering of d electrons and the fourth term 
the sd hybridization. The scattering of s electrons is not explicitly introduced as it is for 
d electrons but is nevertheless taken into account via sd hybridization. E&) and Es(k)  
are the kinetic energies ford and s electrons; [e), (el, Ik;) and ( k i l  are the annihilatiow 
creation operators for Bloch states: in:) and (ngl are the annihilation-creation operators for 
Wannier states; y is the hybridization constan$c:;l is the position of the d level, depending 
on the spin index U(+/ - I )  through exchange splitting and taking the value €2; or E:," 
with the probability x p  and 1 - x@ respectively; and f i  is the index relative to the layer 
(1 and 3 for the two ferromagnetic layers, 2 for the paramagnetic spacer). 

To proceed further we have to calculate retarded and advanced Green functions of 
the Hamiltonian (I). These Green functions are averaged at a microscopic scale over the 
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distribution of A and B atoms within each layer. Nonetheless they remain inhomogeneous 
at the scale of the layers’ thicknesses. To cany out this calculation, it is convenient to use 
mixed (K, 2) representation [17], where K is the component of electron niomentum in the 
plane of the film and 2 the coordinate perpendicular to the plane. The coherent potential 
approximation (PA) is used to average the Green functions at the microscopic scale. 

Spirl-dependent coherent potentials for d electrons within each layer (E&(E)) are 
determined by the following equation: 

A 0  where &,, = xbd,; + (1 - ns@;” represents the average potential energy in layer p and 
F&,+(E) is the diagonal dd part of the Green function in layer p for electrons with spin U.  

As a first step in the self-consistent calculation of the coherent potentials and of the 
b e e n  functions, we use for the expression F ~ . ” ( E )  the relation 

established for bulk materials [25]. In this formula, a is the ratio of d-band to s-band widths 
and ~ ~ ( 6 )  is the density of s-electron states in the pure metal, neglecting sd hybridization. 

For s electrons. the effective coherent potentials B&(E) may be approximated as: 

where (l/r)Im[F&,s(E)] is the density of d-electron states with spin U.  In ferromagnetic 
transition metals, the density of d states for spin-up and spindown electrons can be rather 
large near EF and quite different for the two species of electrons 1231. As a consequence, 
the ritio of mean free paths for spin-up and spin-down electrons may also be very large (or 
small). This situation is quite different from that in [lS] in which the ratio of mean free 
paths is propohonal to the quantity [(w - j ) / ( w +  j)I2 (where w is the scattering impurity 
potential and j that of the sd-exchange integral). Indeed, j is usually much smaller than w 
so in this model the ratio of mean free paths cannot be very different from one. 

3. Green functions, conductivity and magnetoresistance 

To make the situation more tractable, we now considers and d electrons separately, choosing 
the values of E$, and B& as effective potentials for s and d electrons. Besides that, we 
neglect the discreteness of the lattice. 

Within these assumptions, the Green functions for s and d electrons are solutions of the 
equation: 

G(Z, Z’) = U&Z - 2‘) 
h2K2 h2 a2 

E-- 

with boundary conditions G(Z‘+ E, Z‘) = C(Z’ - c, Z’) and 

(3) 
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when E + 0. Also, C(Z, Z’) = 0 on outer boundaries (for Z, Z’ = 0 or a + b + c), 
G(a + E .  i’) = C(a - E, Z’), G(a + b + E, Z’) =. C(a + b - E ,  Z’) and coiresponding 
equalities for derivatives at inner boundaries. 

Equation (3) is exactly the same as in [17], but here it is solved exactly without the 

As mentioned in the preceding section, in order to make the calculation completely 
self-consistent, we should calculate the coherent potentials E; from equation (2) in which 
F&(E) would Ee the diagonal dd part of the Green fundion calculated from equation (3) 
which depends i k l f  on E;. Our approximation which uses for F&(E) the expression 
for the bulk material is the first step in this iterative self-consistent calculation. This 
approximation is valid as long as thicknesses are large compared to kF1 and differences 
of potentids - I are small compared to EF. 

restriction lx;/EFl (< 1. 

For the Gr&n functions, we then get the foilowing expressions: 

(4 

when Z and Z’ E [a] and Z > Z’; the notation Z E [ U ]  means that the coordinate Z 
corresponds to a position along the z-axis within the layer of thickness a. 

(ii) 
[ K ~ C O S K Z ( Z - U - ~ ) S ~ ~ K ~ C - K ~ S ~ ~ K Z ( Z - U - ~ ) ~ O S K K ~ C ]  C(Z, Z’) - [ K Z C O S K Z ( Z ’ - U ) ~ ~ ~ K ~ ~  - q s i n ~ ~ ( Z ’ - a ) c O s ~ ~ U 1  

when Z and Z’ E [b] and Z z Z’. 
(iii) 

2mao sin ~3 (Z‘ - D) 
G(Z, Z‘) = - 

Den . 

when Z and Z’ E [c] and Z c Z’. 
(i-4 

2mao sin K I  Z 
~ ’ K Z  Den 

G(Z, Z’) = [KZ cos KZ(Z’ - a - b) s in~3c  - ~3 sin KZ(Z’ - a - b) cos K S C ]  

when Z E [a] and Z’ E [b]. 
(V) 

h a 0  sin~IZ‘sin~3(Z - D) 
h2K2 Den 

G(Z, Z’) = - 

when Z E [c] and Z’ E [a]. 
(vi) 

2mao sinKa(Z - D) 
R z ~ z  Den 

C(Z, Z’) = - [KZ COSKZ(Z’ - a )  sinqa + K I  sin~z(Z’ - a ) c o s ~ ~ a ]  

when Z E [c] and Z’ E [b]. 
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For other regions of Z and Z’, the expressions of the Green functions can be found by 
appropriate permutations. In all cases, 

= K1 COSKla(SillK3CCWKzb + (K3/K2)ShK2bCOSK3C) 

- ~ z s i n ~ , a ( s i n ~ 3 c s i n ~ ~ b  - (K~/K~)COSK~~COSK~C).  

In these expressions K,, is defined by K,, = (l /h)J2m(E - KZ/2m - E+) for p = 1,2,3.  
Zcros of the real part of the denominator (Den) define the eigenvalues of the energy of the 
problem considered. 

Ohm’s law in the present inhomogeneous media is given as 

j(Z) = /u(Z, Z’)E(Z)d3Z’ 

where j(2) is the current density at point Z and E(Z’) the electrical field at pant Z’ 
assumed to lie along the x-axis. As was pointed out in [17], the conductivity is a non-local 
characteristic of the media. The expression of the non-local conductivity u(Z, Z’) is given 
by [16]: 

in which a0 is the lattice constant, N the number of sites in the plane of the layers, and 
UK,  = KJm the xcomponent of the electron velocity. 

In the in-plane current geometry (cP)), the measured conductivity is given by: 

U = iD iD dZdZ’u(Z, Z’) 

where D = a + b + c is the total thickness of the sample. The final expression of this 
conductivity has been calculated analytically; its expression is given in the appendix. The 
expression of the magnetoresistance is obtained from the calculation of the conductivity 
in both the parallel and antiparallel alignment configurations of the magnetizations in the 
successive ferromagnetic layers. In the next section, we use this analytical expression to 
investigate the influence of the quantization of electron momentum along the z-axis, the 
respective role of spin-dependent scattering and spindependent potential barriers on the 
magnetoresistance and the variation of magnetoresistance with thicknesses of the various 
layers. 

4. Results and discussion 

4.1. Influence of the quantization of electron momentum along the z-axis 

The expression given in the appendix shows that the conductivity and the magnetoresistance 
of the multilayers oscillate as the Sicknesses of the layers are varied. These oscillations are 
due to the quantization of the z component of conductionelectron momentum. They must 
be distinguished from the magnetoresistance oscillations observed in coupled multilayers 
which arise from oscillations in the interlayer coupling [%I. When the thickness of layer /.L 
is varied, the period of these oscillations is equal to H / $  and their amplitude asymptotically 
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decreases as (l/~L’)exp(-L”/P), where L” is the thickness of layer j~ and 1” the mean 
free path of electrons in th is  layer. It is interesting to note that the mean free path is the 
characteristic length associated with the damping of quantum oscillations in the conductivity 
and magnetoresistance of these multilayers. 

In figure 1, we compare the magnetoconductivity of sandwiches calculated from the 
present theory, which takes into account quantization of electron momentum, and from the 
theory of [17] in which these oscillations have been neglected. For this comparison, we 
chose ki = kg = ks = 1 A-’ equal for spin-up and spin-down electrons, which means that 
we do not introduce any potential barrier hetween layers. For the mean free paths, we take 
the values determined from fits of experimental data on NiFe a &Cu b h i i e  c &FeMn 
spin-valve structures 1171: lf = 1; = 120 & 1: = 1; = 13 8, and 1; = 1: = 215 A. In 
figure 1, the thicknesses of the various layers are large compared to k;‘ (a varying between 
0 and 300 A, h = 22 A. c = 50 A). At these large thicknesses, the quantum oscillations 
are almost totally damped ((kFLp) > 1). Therefore the results of the two theories are 
indistinguishable. 

0 100 200 300 
a <A> 

Figure 1. CompariSOn of magnetoconductivity calculated f” tk present lheoly and f” [I71 
for the case of NiFe a h/Cu 22 miFe 50 &eMn spin-valve sandwiches for kk = k: = 6 = 
1 A-’ equal for spin-up and spindwvn eleetmw. and IT = I: = 120 & 1: = 1; = 13 A: 
1: = 1; = 215 A. The results from the hvo theories are indistinguishable at these large 
thicknesses. 

In fi ure 2, we consider a situation with much thinner layers (a varying hehveen 0 

k: = 0.3 A-’). In this case, well-defined oscillations are found, the amplitude of which 
decreases as the thickness of the first layer is increased. We think that it should be possible 
to observe such oscillations of conductivity and magnetoconductivity in multilayefi with 
very thin layers even in the presence of interfacial roughness provided that this roughness 
is small compared to the period of oscillations. Fe-based multilayers in which d electrons 
seem to cany a significant part of the current I241 may be particularly good candidates for 
the observation of these oscillations. We draw attention to the fact that the oscillations 

and 40 1 , b = 10 A, c = 10 A) and a smaller value of Fermi momentum (ki = kg = 
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i 0.5 

0.1 1 
0 I. 0 10 20 30 40 

a (A) 
F I ~ I I ~  2. Magnetcanductivity ca~c~lated mOm  le present wry in the case of 
F II &M 10 &F 10 A spin-valve wdwiches for kk = kg = 0.3 A-' qual for spin-up 
g d  spindown ekdibns, and 1: = l: = 120 A; 1: = I f  = 13 A: /: = /; = 215 A. Oscillations 
are obsewed in the pi-esent theory because of the lower thicknesses and smaller Fermi momenta 
than those for the case illustrated in figure 1. 

0.6 

0 

Figure 3. Magtleloconductivity of a sandwich P 10 &Nhi b &F 10 A (limit Of ve@ thin spacer 

ferropagnetic ~iyers: I ! / I /  = I : / [ $  = IU) &i3 A; 4 U - i 4 34 - - 1 A-]. 
layer) veous e o  k:'/k:'i= k3:fi:') m tk presence of large spindependent mtleripg in the 

observed in magneto-optic Kerr rokition, for instance in 6e/Cu multilayers 1271;. have 
the S h e  physical origin & the pr$ent osdillations in &port properties, nameiy the 
qu&tization of electron mohentum ih the direction perpendicular to the plane of the layers. 
Hdwever, the KeF effect is related td transitions within the d-band only, while the t&sport 
prdperties inqolve both sp and d electrons. Therefore the% oscillations are prdbqbly more 
prdnounced in magneto-optical than in transpoit pioperties. I~I principle, as in the De Haas 
Vai, Alphen effect, the eip&mtSi observation df these dscillations might be used to 
determine Fermi-surface pmete r s .  

4.2. Influence of potential barriers on the giant magnetoresistance 

In this section, we successively consider three situa$bns: 

scatfering; 
(i) the effect of spindependent potential bamers in the presence of large spindependent 
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(ii) the effect of spin-dependent potential barriers when all scattering is not spin- 
dependent; 

(ii) the effect of spin-independent potential b h e r s  in the presence of large spin- 
dependent scattering. 

From this investigation we will show that, in general, the existence of potential barriers 
(spindependent Or not) decreases the giant magnetoresistance which mainly originates 
from spindependent scattering. The two effects may have constructive contributions to 
the magnetoresistance only when spindependent scattering is very weak. 

42.1. The effect of spin-dependent potential barriers in the presence of large spin-dependent 
scattering. To illustrate this case, we choose the following set of parainetm: l r / l :  = 
l $ / l i  = 120 .&/I3 8, corresponaing to NipoFezO [17]; k:' = kz' = 1 A-'; a = c = 10 A, 
b = 0 8, and we vary kit aiid k i f  keeping kit = k i t .  We set b = 0 A (the limit 
of a very thin spacer layer) t6 focus on the effect of the spin-dependent barriefi at the 
intdaces between the ferromagnetic layers without additional effects from the spacer layer. 
The two ferromagnetic layers are assumed identical. In this case, the conduction electrons 
experience a flat potential whkn the diagnetizations are in parallel alignment Hnd spin; 
dependent potential barriers when they are in antiparallel alignment. Figure 3 shows the 
amplitude of the giant magnetomistance (expressed as the relative change of Conductivity 
normalized by conductivity wtien the magnetization is in parallel alignment) versus the ratib 
kAt/G'. The general trend is clearly a decrease in the amplitude of GMR as Ikkt - kk!l 
incieases. Some oscillations are observed around this general trend which due to the 
quantization of electron momentum along the z-axis as discussed in the preceding section. 

4.2.2. The effect of spin-dkpendent potential barriers in the absence of spin-dependent 
scattering. We consider he& the other limiting case where lT / l :  = / $ / I t  = 66 8,166 8, = 1 
(the. same conductivity as above but without spindependent scattering): The.bther 
pqar$eters ar$ kept the s h e  as %hove: k:' = k:' = 1 A-', a = c = IO 8, and 
b = 0 8,. When the ratio kLt/k:' is qua l  to one, the GMR amplitude is equal to m o  
as expected in the &sen& of both Spindependent scattering and spin-dependent potential 
barriers. As .kkt/kA' is varied above or below unity (see figure 4). an increase of GMR 
is fiist observed followed again by a d e c p e  when lkkt - kk' 1 becomes too large. Such 
behaviour can be understood in terms of electron reflectance at the potential barriers in the 
antiparallel magnetic configumtiob of the sandwich. Indeed, elecaons with small angle of 
incidence are almost ideally reflected with very small penetration length when the height 
of tlie potential bamek increds. Therefore for small barrier heights, the GMR arises as 
a result of the change of conductivity between the two cases without barfiers (@arallel 
alignment) and with spindependent barriers (antiparallel alignment). However when the 
barrier height is too large ( l e e  or small ratio Gt/k:'), these two situhtions (with or 
without barriers) become equivalent because the conduction electrons a ~ e  specularly reflected 
either on the outer boundaries or on the potential barriers, leading in both cases to the 
same conductivity (in this case there is no size effect and the two layers are completely 
decoupled). The maximum amplitude of magnetoresistance that can be obtained from this 
mechanism of spindependent barriers'is nevertheless significantly lower than in the case of 
spin-&pendent scattering (compare the amplitudes of the GMR in figures 3 and4). Therefore, 
spin-dependent scatt+ng remains the main origin of GMR in magnetic multilayem. Spin- 
dependent potential baniers cai give a constructive conhibution to he GMR in the case 
of very weak spin-dependent scattering. However in most cases, these barriers reduce the 
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GMR amplitude because they induce a reflection of the conduction electrons and therefore 
prevent the exchange of electrons between the ferromagnetic layers through the spacer 
layer. This is the so-called 'channelling effect' also discussed in a classical framework in 
[14]. The situation would of course be totally different in a geometry with current flowing 
perpendicular to the plane of the layers (CCP geometry). Work is in prog&ss to treat the 
case of CCP GMR in the pmence of barriers. 

0.10 , I 

Figure 4. Magnetmnductivity of a sandwich F 10 A/NM 0 A/F 10 A (limit of very thin 
spacer layer) versus ratio kbL/kLt(= kZ'/kZt) in the absence of spindependem scanering in 
&e femmagnetic layers: [ ! / I :  = l l / l j  = 66 A166 A = 1; 6' = 6' = 1 A-'. 

Figure 5. Magnetoconductivity of a sandwich F 10 A/NM 20 A/F 10 A Venus ratio !$?/kit in 
the presence of large spindependent scanering in the fmmptic layem: 1 : / 1 f  = l : / l j  = 
120 At13 A; I$ = 1; = 215 A; ki' = k i4  = kit = kit = 0.6 A-'. 

4.2.3. The effect of spin-independent potem'al barriers in the presence of spin-dependent 
scattering. We now consider the situation where potential barriers exist between the spacer 
layer and the ferromagnetic layers but are not spin dependent. The set of parameters chosen 
is: l r / l i  = lill; = 120 &I3 8,; l$/l; = 215 8,1215 8, = 1; kb'/kb' = k;'/k;' = 
0.610.6 = 1 and we vary k:' in the spacer layer keeping k',L = kit (non-magnetic spacer). 
Figure 5 shows the result The same general trend is ohserved as in the two previous cases. 
The GMR amplitude is maximal in the absence of potential barriers and decreases as the 
height of the barriers increases due to reflection of conduction electrons. 
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4 3 .  Influence of the naiure and thickness of the spacer layer 

In this section, we investigate the effect of the spacer layer on the magnetoresistance of the 
sandwich. In particular we compare. the situations in which the spacer constitutes either a 
potential M e r  or a potential well for conduction ele&ons. 

0.1 

o t  
0 10 30 40 

b (A) 2o 

Fire 6. Magnetcconductivity of a sandwich of composition F 5 &NM b &F 5 A versus 
thickness b of spaFer layer (b varying f" 0 to 40 A). The parameters are: l!/l: = 
i j / l i  = 120 &I3 A: Q/l; = 215 A/ZIS A = I; k;'/k;' = k:'/k:' = 1 A-'P A-' = 1 and 
Gt = 6' = 0.6 A-l. The spacer layer constitutes a potential barrier for conduction elecmms. 

Figure 7. Magnetomnductivity of a sandwich of composition F 5 h b l  b hh 5 A versus 
thickness b of the spacer layer (b varying f" 0 lo 40 A). The pammeters are: l f / l t  = 
1;/1: = 120 &I3 A; l z / l i  = 215 A/215 A = 1; kkt/k:' = $'/kzi  = 0.3 A-'10.3 A-' = 1 
and 4' = kgi = 0.6 A-l. The spacer layer wmtihltes apotential well for conduction eleclmns 

Figure 6 represents the magnetoconductivity of a sandwich of composition F 5 h M  
b &F 5 A versus the thickness b of the spacer layer (b varying from 0 to 40 A). 
The parameters are: l!/lf = l l / l$  = 120 &I3 A; l l / l i  = 215 AI215 A = 1; 
G T / k i 4  k;?/kf4 1 A- ' /I  A-l = 1 and kit = k:' = 0.6 A-'. The smaller value of 
the Fenni momentum in the spacer layer compared to in the ferromagnetic layers implies 
that the spacer acts as a potential banier. A dramatic decrease in the magnetoconductivity 
is observed as only one monolayer of spacer is introduced between the two ferromagnetic 
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layers (from 60% to 7%). At larger thicknesses, the magnetoresistance exhibits a smooth 
maximum modulated by oscillations due to the quantization of momentum along the z-axis. 
The presence of potential barriers may explain the absence of G M R  or its very low amplitude 
observed in some multilayers. It is indeed striking that Fe/Cr [I] multilayers exhibit a large 
GMR while only small magnetoresistance has been observed in Fe/& multilayers [Z]. In 
contrast Co/Cu or NiFe/Cu multilayers exhibit a very large Ghm [2-4] but neither Co/Cr nor 
NiFe/Cr [28]. Similarly NiFe/Cu/NiFe/FeMn spin-valve sandwiches show large GMR while 
NiFe/Ai/NiFe/FeMn do not exhibit any magnetoresistance 1291. Several reasons can be put 
forward to explain the puzzling absence of G M R  in some of these systems. For instance in 
NiFe/Al it has been observed that large interdiffusion between Permalloy and aluminium 
takes place at the interfaces with the formation of an NiFeAl paramagnetic interfacial alloy. 
This interfacial alloy can provoke strong spin-flip scattering leading to the absence of GMR 
in this system [291. In NiFelCr multilayers it has been proposed that competing spin- 
dependent scattering phenomena at the NiFelCr interfaces (larger scattering for spin-up 
electrons) and in the bulk of the NiFe layers (larger scattering for spin-down electrons) may 
explain the very low magnetoresistance amplitude of these multilayers [28]. However we 
believe that in all cases the existence of potential barriers resulting from a mismatch of the 
Fermi wavevectors in the adjacent materials may explain or at least contribute to the very 
low GMR observed in seveml of the systems listed above. 

Figure 7 illustrates the opposite situation in which the spacer layer constitutes a potential 
well. We choose here: l r / l :  = l l / l i  = 120 &13 k 1$/1: = 215 8,1215 8, = 1, 
k F I F -  I t  k'$ - k3?/k3& F F -  - 0.3 A-'/03 = 1 and kEt = ki l  = 0.6 A-l. The thicknesses of 
the ferromagnetic layer are the same as in the previous case: a = c = 5 A. The general 
trend is a smooth decrease of Ghm due to the scattering in the spacer layer and to the 
shunting of the current in this layer. However, well-defined damped oscillations of period 
rr/k:t FT 5.2 8, are observed which are again due to the quantization of momentum in the 
direction perpendicular to the plane of the layers. Therefore the presence of potential wells 
between the ferromagnetic layers does not affect significantly the GMR amplitude in contrast 
to potential barriers which drastically reduce the G m  as shown above. 

5. Conclusion 

We have presented a real-space quantum theory of giant magnetoresistance in magnetic 
multilayers which takes into account spin-dependent scattering in the ferromagnetic 
layers and existence of spin-dependent (or not) potential bamers (or wells) between 
layers. We have shown that the quantization of electron momentum along the direction 
perpendicular to the plane of the layers leads to well-defined oscillations in conductivity 
and magnetoresistance which should be observable experimentally. We have demonshated 
that the main origin of the giant magnetoresistance in magnetic multilayers remains spin- 
dependent scattering and that in most cases (except if the spin-dependent scattering is very 
weak) the existence of potential barriers (even spin-dependent barriers) decreases the G m  
amplitude. Therefore in order to obtain large GMR, it seems important to choose couples of 
magnetic and non-magnetic materials which have g o d  matching of Fermi momentum to 
minimize the effect of potential barriers. 
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Appendix 

In this Appendix, the analytical expression of the conductivity of a sandwich of composition 
P a &NM b .h c A with infinite potential walls on outer boundaries is given. This 
expression is the sum of nine terms which must be integrated within different intervals. 
The following notations are used: 

~ 

f ( x )  = (1 -x)/2 L J ~  = k i ) / $  

with x = 1 - K * / k i " .  I, and !i$ represent respectively the mean free path and Fermi wave 
vector of the considered species of electrons (spin-up or spindown) in layer p. 

Term 1 = (cIcz(1 +e4'=) 

x [~(c~/c*)(I  + e4Zb)(l - e-+9 + 2(4/4 + 1)(1- e-u2b)(l + e-4d3r) 

+ 4e-zd3c(c:/c; - 1)(1- e-*b)cos2c3c1 
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Then the three following expressions: 
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a Term 1 
expre, = -- f (x )  c I  Den 

b 12 kf' Term 2 
expre, = ---- f ( x )  cz 11 k:"' Den 

c 13 kf' Term 3 
f ( x )  expre, = - -- - 

c3 11 kb3' Den 

must be integrated in the intervals 10, I], [O, 1 - U;'] and 10, 1 - u;~], respectively, as the 
three quantities: 

11 Term 4 
kf) Den expre4 = f (x) 

expre, = - (h - ) -- k$) Term 5 f (1) 

expre, = - (k)' - -- kg' Term 6 f b). 

11 Den 

11 Den 

For the three following terms, the intervals of integration are different: 

12 Term 7 
k,"' Den expre, = - - f ( x )  in the interval [max(0, 1 - v;~), 11 

13 Term 8 
expre, = - - f (x )  in the interval [max(o, I - vyZ). 11 Den 

The conductivity of the sandwich in the parallel or antiparallel magnetic configurations is 
finally given by: 

In this formula dil represents the conductivity of the species of electron considered (spin up 
or spin down) in layer 1. Lowi and upi are the lower and upper limits of integration which 
are given above for each of the nine terms to be integrated. The variable x is related to 
the incidence of conduction electrons. The total conductivity is the sum of the conductivity 
of spin-up and spin-down electrons. The magnetoconductivity is obtained by calculating 
this total conductivity in both configurations of parallel and antiparallel alignment of the 
magnetizations in the ferromagnetic layers. 
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